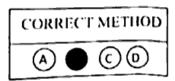
ENTRANCE EXAMINATION - 2020 SET - C


Roll No.

Time: 1 Hour 30 Minutes

Signature of Invigilator Total Marks: 100

- Instructions to Candidates 1. Do not write your name or put any other mark of identification anywhere in the OMR Answer Sheet.

 STREET MARK OF IDENTIFICATION ANYWHERE IN OMR RESPONSE IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be
- SHEET, the OMR sheet will be cancelled, and will not be evaluated. 2. This Question Booklet contains the cover page and a total of 100 Multiple Choice Questions of One mark each.
- 3. Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work also be used for rough work.
- There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager 5. ETC. is strictly PROHIBITED.
 - Candidate should check the serial order of questions at the beginning of the test. If any question is 6. found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
 - 7. Answers must be marked in the OMR Response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
 - The OMR Response sheet should not be folded or wrinkled. The folded or wrinkled OMR/Response 8. Sheet will not be evaluated.
- Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any 9. other details, if asked for, should be written only in the space provided.
- There are four options to each question marked A, B, C and D. Select one of the most appropriate 10. options and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Answer Sheet is mentioned below.

M	Gene modi	etically Modified (GM) plants	have been	useful in many ways. Genetic
	A B	decreased efficiency of min- Genetically Modified (GM)	eral usage plants hel	by plants ped to reduce post-harvest losses.
С	Ge (pe	netically Modified (GM) planest-resistant crops).	nts reduced	I reliance on chemical pesticides
P	Ge	netically Modified (GM) places (cold, drought, salt, hea	ants made	crops more tolerant to abiotic
2.		tich year, the Air (Prevention) de noise as an air pollutant?	and Cont	rol of Pollution) Act was amended to
	K	1981	В	1978
	С	1987	D	1997
3.	Wh	ich of the following groups	has record	led the maxim um no. of species?
	Α	Algae	JB′	Fungi
	С	Mammalia	D	Aves
4.	Suc	cession of plants in wet area	s is called	i
	Α	Hydrarch succession	,B	Xerarch succession
	С	Hydroponic	D	Hydrophilic succession
B07	SET - C	13	31	
		https://ww	w.jamias	tudy.com

	Who formulated the law of "Compe	titive 1	Exclusion Principle" to explain the
5.	Who formulated the law of possibility of co-existence of two clos	ely rel	ated species?
	A GeorgyGause	B	Alfred J. Lotka Richard Goodwin
6.	C Vito Volterra Which of the following gene codes a A cryllAb C crylAc	toxin B' D	protein that controls com borer? ery1Ab ery11Abc
<i>①</i> .	Who is called as the Darwin of the 2 A Ernst Mayr C H. G. Khorana	B D	Greg Mendel G. N. Ramachandran
<i>(</i> 6)	What is the biological name of Men?	,	
	A Primate C Adam	.B D	Homo sapiens Hominidae
9. W	hich of the following famous bota	nical	garden is located at Lucknow.
Α	Royal Botanic Gardens		
-B	National Botanical Research I	nstitu	te
С	Indian Botanical Garden		
D	Botanical Gardens of the India	n Rej	public
B07 SET - C	[4]		Entrance Examination - 2020

, SE, I =	U		Entrance Examination - 7
B07 SET _		[5]	
C	4,00,000 bp	D	40,000 bp
,.Α	4000 Եր	В	1,36,000 bp
13. Ho	w many base pairs are the	ere i n E. col i v	whose DNA is 1.36 mm in length?
C	Mirabillisjalapa	D	Lathyrusodaratus
\mathcal{N}	E. coli	В	Oryzasativa
mo	ode of replication of DNA	by Matthew M	eselson and Franklin Stahl in 1957?
12. W	hich organ ism was used	for proving	the hypothesis of semi-conservative
	virus particle.		
D	•	A molecule tha	t is enclosed within the core of the
	virus particle.	A molecule the	••
c	One single-stranded PM		at is enclosed within the core of the
'R			olecules that are enclosed with in
	the core of the virus part	icle.	that are enclosed with in
Α			olecules that are enclosed with in
J. The	HIV genome consists of		analoged with in
	D Species, Orde	er, Genus, Ph	ylum, Kingdom
	C Species, Orde	er, Genus, Ki	ngdom, Phylum
	G Species Ord	or Co	ylum, Kingdom
	B Genus, Order	r. Species, p.	yium, Kingdom
	A Species, Gen	us, Order, ph	ylum, Kingdom
10.	Identify the correct	order of taxo	nomical sequences?

1/2	Men	del's experimental material	was -		
	Α	Mirabillisjalapa		В	Oryzasativa
	C	Lathyrusodaratus		Đ	Pisumsativum
15.	• Mei	ndel presented his work i n			
	Α	Natural History Society	in Am	erica	
	B.	Natural History Society	in Gei	rmany	<i>;</i>
	C	Natural History Society	y in Br	ınn	
	D	Natural History Society	y in Ru	ssia	
16.	The A L	innate tendency of offspring Resemblance Heredity	•	B D	Variation Inheritance
17.	The rep	roductive cycle or the menstru	al cycle	occui	rs in the female primates of
				Apes	
			D /	All of	the above
18.	Which	of the following is a part of	the hi	nd br	ain
	Ą	Cerebellum and medulla	В	C	Cerebrum
	c	Corpora quadrigemina	D	C	Cerebral aqueduct

19.)	Whic	h one of the following is not a la	£	cest.	nial meninges in brain?
	Α	Dura mater	B		a mater
		Meningitis	D		rachnoid
20	, Th	e no. of bones in human cranic	ım is		
	χ	14	В	ı	8
	C	206	D	•	33
21.	Pro	teins involved in muscle cont	raction	arc	e
	Α	Opsin and rhodopsin			
	В	Hacmoglobin and myoglol	oin		
	C	Carbonic anhydrase and gl	lucose o	oxid	jase
	Þ	Actin and myosin .			
22.	How	many chromosomes are the	here in	a fr	ruit fly?
	Α	8		B	46
	С	23		D	42
23	Whic	h one of the following is a	a stero	oid l	hormone?
	A	Insulin		В	B Epinephrine
	C	Cortisol		D	O Glucagon

		types of	cells present	in the Islet of Langernans.
24.	What A C	are the two main types α-cells and β-cells White blood cells	D	B cells Red blood cells
25.	Mcla A C	tonin is secreted by Parathyroid gland Thyroid gland	B	Adrenal gland Pineal gland
26.	Aux	in was first isolated from	n	
	Α	Sunflower	В	Bovine serum
	<u>.</u> C	Lotus root	D	Human urine
27.	Wh	ich one of the follow	ing statemen	its is incorrect?
	A	Carotenoids is blu	e in color	
	В	Xanthophyll is yel	llow in colo	r
	C	Chlorophyll b is y	ellow green	in color
	D	Chlorophyll a is bi	right or bluc	green in color
28.	Duri	ng photosynthesis, in w	hich part of	cell, is sugar synthesised?
	A	Stroma	В	Lysosome
	C	Ribosome	~D	Mitochondria

	29.		der dying leaves ex ough a process called nerally not remobilis Potassium	od temobilies	f their t	nineral content	to youn	ger le	aves on is
		•			В	Nitrogen			
		œ	Calcium		D	Sulphur			
	30.	Du	aring the cell division	on in apical m	eristem,	the nuclear me	mbrane	appear	rs in
		Α	Cytokinesis		В	Anaphase			
		æ	Telophase		D	Metaphase			
31.	W	hicl	of the following Chromosomes ar together at the ce	re seen to	y featu be co	re of metaphas	se durin	ig cell	division. ds attached
	В		Chromosomes go	et aligned al	ong me	taphase plate	through	spin	dle fibres.
	C		Chromosomes ar						
	D	1	Spindle fibres at	tach to kine	tochore	es of chromose	omes.		
32.	In	a	polysaccharide,	a bond	called		links	the	individua'
	mo	onos	accharaides.						
	A		Ionic bond	В	Pho	sphodiester bo	ond		
	Æ		Glycosidic bond	D		otide bond			

		cl	ant ce	l wall	is
33.	٨	Jajor component of pl	H 11.	В	RNA
	Λ	***		D	Cellulose
	C	Proteins			
34.	lf t	he external solution balan	ces the	e osmo	tic pressure of the cytoplasm,
	to t	oc		В	Hypertonic
	Α	Exothermic			••
	C	Hypotonic		D	Isotonic
35.					in transport of molecules and
		proteins to pass through the n			
:	A'	Tubulin	B	Colla	gen
(С	Transferrin	N)	Porin	
36.	Th	e best bio material for the	study o	f mitosi	s in laboratory is
	Α	Ovary		В	Leaf tip
	C	Anther		_D	Root tip
37.	1:	n a somatic cell cycle, DN	A synt	hesis tal	ke place in
	A	Prophase of mitosis		JB^	S phase
	C	G 2 prophase		D	G 1 phase

38.	W	ho discovered triple helical stru	cture of c	collag	en?
	A	James Watson	В	Srii	nivasa Ramanujan
	C	G. N. Ramachandran	D	Н. (G. Khorana
.0	Ur	eotelic animal excretes			
; 9.	A	Urea		В	Uric acid
	C	Ammonia		D	Nitrogen
10.	Whic	h one of the following is inco	orrect for	r an is	sobilateral leaf?
	Ā	Reticulate Venation			
	В	Parallel venation			
	С	The mesophyll is not differe	entiated i	into p	alisade and spongy
	D	The stomata are present on l	both the	surfa	ees of the epiderm is
41.	A sta	minode is			
	A	A fertile stamen	В	,	A sterile carpel
	С	A stamina with ovules	~D	4	A sterile stamen
£.	The	most notable disease cause	ed by p	rions	i s
	<u>.</u> A-	Bovine spongiform enco	phalop	athy	(BSE)
	В	Parkinson's disease			
	C	Alzheimer's disease			
ales i	D	Meningitis			

₽. Id	lentify	the incorrect ha	abitat of arch	aebact	eria.
A	•	Saliva		В	Marshy areas
نو ن	<i>y</i> 1	lot springs		D	Extreme salty areas
44 .	prop A B C D	ich of the following posed by R. H. Whittal Monera, Protista, Fi Prokaryotica, Protis Prokaryotica, Fungi Algae, Bryophytes,	mgi, Plantae and A ta, Fungi, Plan tae i, Plantae, Animal Pteridophytes, G	Animalia and Ar ia and E	111111111111111111111111111111111111111
	oxyg A	gen. E. coli	æ æ		plasma na virus
(46)	Wh A C	HIV ich one of the follow Pavo Columba		mple of	class Aves?
47.	The	Anatomy of Seed P Katherine Esau Lewin Gene	lants was writter B D	Ma	nrx Albert bert Lehringer

A Rhodophyceae. C Fucoxanthin D Chlorophyceae C Fucoxanthin D Chlorophyceae D Chlorophyceae A Fungi C Brown algae B Virus D Red algae Solve Electrons in Bohr's orbitals are stationary The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii SI BF3 acts as an acid according to a concept of A Bronsted B Arrhenius	4	18.	Chlo	prophyll d is present in		
C Fucoxanthin D Chlorophyceae Carrageen is a A Fungi C Brown algae B Virus D Red algae Bohr's orbitals are called stationary because Electrons in Bohr's orbitals are stationary C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii S1. BF3 acts as an acid according to a concept of A Bronsted C Lewis D Michaelis and Men S2. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers	-,		A		I	B Phaeophyceae
A Fungi C Brown algae B Virus D Red algae Bohr's orbitals are called stationary because Electrons in Bohr's orbitals are stationary The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii 51. BF3 acts as an acid according to a concept of A Bronsted B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers		*	C		I	D Chlorophyceae
A Fungi C Brown algae B Virus D Red algae 150) Bohr's orbitals are called stationary because Electrons in Bohr's orbitals are stationary B The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii 51. BF3 acts as an acid according to a concept of A Bronsted B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be convened into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers	-		Ca	rrageen is a		
Bohr's orbitals are called stationary because Electrons in Bohr's orbitals are stationary B The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii 51. BF3 acts as an acid according to a concept of A Bronsted B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers		•	٨	Fungi		
Electrons in Bohr's orbitals are stationary B The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii 51. BF3 acts as an acid according to a concept of A Bronsted B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers			C	Brown algae	В	Virus
B The protons remains in nuclei and are stationary. C The electrons in Bohr's orbitals a have fixed energy. D Bohr's orbitals have a fixed radii 51. BF3 acts as an acid according to a concept of A Bronsted B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers						_
B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers		150)	B C	The protons remain	orbitals are sta orbitals are sta orbitals and ohr's orbitals a	l are stationary.
B Arrhenius C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers	51.	В	F ₃ ac	ets as an acid accordin	ig to a concer	ot of
C Lewis D Michaelis and Men 52. The isomers which can be converted into another form by rotation molecule around single bond are called A Geometrical isomers B Enantiomers		_	,			
molecule around single bond are called A Geometrical isomers B Enantiomers		C	;	Lewis	D	Michaelis and Ment
A Geometrical isomers B Enantiomers	52.	T	he is	omers which can be co	onverted into	another form by rotation of
C Diasteoreomers D Conformers		Ā	. (Geometrical isomers	В	Enantiomers
		C	1	Diasteoreomers	D	Conformers

53	. In	an aqueous sol	ution, hydrog	gen will r	not re	duce
	Α	Fe ³³		1	В	Cu ² '
	C	Ag			D	Zn ²
54.	A C	dration of alcohol i Addition reaction Redox reaction		υ	Eli	ostitution reaction mination reaction
		in0	has least pol	arity ir	ı bor	nd ?
55.	Whic	th of the following		В	н	-()
	A'	H-S		D	Н	-F
	c	H-CI	18 M 4 M			
		all is effect that ca	an be observe	ed in		
56.		Precipitate		В	U	Insaturated solute
	A C	Good solvent		Þ	C	Colloidal solution
<i>5</i> 7.	lf ga	s is expended at o	constant temp	oeratur	e wroa	icoe
	Α	The number of				
	В	The kinetic end				
	С	The kinetic ene	ergy of the m	olecul	es re	emains the same
	Ď	the pressure inc	creases			

sa. The p	rocess of separation of a	racemic mi	xture in to d- and 1-enantiomers is
called			
Α	Dehydrohalogenation	В	Revolution
С	Dehydration	D.	Resolution
59.	How many chain isomers A 4 C 6	s could be obtaine	d from the C ₆ H ₁₄ ?
	<i>C</i> 0	B B	5 7
60. TI	he molar concentration of: 1.0 moles/litre	20 gram of Na()1	I present in 5 litre of solution is 0.5 moles/litre
С	0.2 moles/litre	B D∕	0.5 moles/litre 0.1 moles/litre
61.	One of the following model of the following m	olecules is not a p B	olymer Protein Amino acid
62.	Electrons in the outer of A Orbitals C Shells	rbit are called LB	

63.	Tree	of 21st Century is		
,	A C	Rubber	Æ	Neem
		Mango	Ð	Acacia
64.	Most	stable ecosystem is		
	٨	Ocean	В	Mountain
6.	С	Desert	Æ	Forest
,65. 66	A B D D	pH of a solution is determined by concentration of salt dielectric constant of the medi-relative concentration of acids environmental effect. environmental effect	ium s and ba	10 ⁻⁶ m
	4	10° m	FOL	10 ^{.9} mm
-67.		a planet comes nearer to sun, Standstill	it moves	Constant at every point Faster
68.	A	/pe semiconductor germanius Aluminium Boron https://www.jamias	Þ	All of the above

		Which one of the following	is a bad o	conductor of electricity?
	69 .			J3 1 m
		C Silver		D Gold
70.	Am	ong the following which is	used for the	he reductive cleavage of disulphide
	Α	Urea	В	SDS
	С	Performic acid	D	β-Mercaptoethanol
71.	Acco	ording to Human Genome Pro	oj∝t, gene	tic similarity among all humans is
	٨	90 %	JB'	99.9 %
	С	99.5 %	D	95 %
72.	The 1	period of geostationary artific	cial satelli	te is
	٨	24 Hours	В	30 days
	С	7 days	D	365 Days
73.	For	a spontaneous chemical proc	cess, the fr	ee energy change is
	Λ	No change	В	Either positive or negative
	C	Negative	D	Positive
		https://wv	vw.jamias	tudy.com

Water falls from a height of 500 m. The rise in temperature at bottom if 74. whole of the energy remains in water, will be

(Specific heat of water = 4.2 kJ/Kg)

1.02 °C Α

В 0.96 °C

æ 1.16 °C

- D 0.23 °C
- 75. The SI unit of power is
- В Ampere

Joule ٨

B w_{att}

- Ohm С
- The value of 'g' at a particular point is 9.8 m/sec² suppose the earth suddenly The value of b shrink uniformly to half its present size without losing any mass. The value of 'g' 76. at the same point (assuming that the distance of the point from the centre of the earth does not shrink) will become

 $9.8 \text{ m}^2/\text{s}^2$ JDA.

В 19.6 m/s^2

4.9 m/s² C

 $9.8\ m/s^2$ **W**

- A point object is 24 cm above the surface of water (m-4/3) in lake. A fish inside 77. the water will observe the image to be at a point.
 - 18 cm below the surface of water Α
 - 32 cm above the surface of water В
 - 6 cm below the surface of water C
 - 32 cm below the surface of water D

78.	Sticky	y ends are overhanging pieces of single stranded					
•	A	DNA	\smile	В	RNA		
	c	Proteins	4	ay.	Messenger RNA		
79 .	Wh with A C	ich of the following viral vector respect to gene transfer to anim: Adenovirus. Baculovirus	s has to al cells B	Retrov	:://www.jamiastudy.com		
80.	The	term Single Cell Protein (SCP)	Vas coi	ined by	*.		
	٨	Ian Wilmot	B		Pasteur '.		
	C	Gregor Mendel	Þ		II L. Wilson		
81.	Whie	h one of the following statement	Lahout	Angio	tensin II is incorrect?		
	۸	Angiotensin II is a powerful va	sodila	tor			
	В	Angiotensin II activates the ad	renal e	ortex to	n release Aldosterone		
	·Ć	Angiotensin II increases the of	omoeu	lar bloc	od pressure and thereby GFR		
	D	Angiotensin II is powerful va	socon	strictor			
82.	Amn	nonotelism is					
	A	The process of excreting uric	acid				
	В	The process of excreting urea		ric agid	•		
	C	The process of excreting urea	- unu ()	ric acid			
,	ĴĐ″	The process of excreting ami					

83	3. V	Vho discovered blood groups?	•		
	Α	Ernst Haeckel		В	Camillo Golgi
	اكر			D	Thomas Cooley
		hat is the normal platelet count in 1	mn	1°3 of l	blood?
		agnal platelet co	В	1-	8
84.	Wh	1,50,000-3,50,000	D	10	0,000-80,000
044	A'	1 41/.0°			
	C	1,500-5,00			
	whit	ch is the most abundant protein in	the	whol	e of the biosphere?
85.		Collagen chate Carboxy	lase	-Oxy	genase (RuBisCO)
	A uz	ch is the most collagen Collagen Ribulosebisphosphate Carboxy			
	C R	Hemoglobin			
		Serum albumin			
	,	nich of the following is not correct	ct?		1
86.	Wh	Robert Brown discovered the	cell		
	K	eniem Cattic	S Ou		fe activities within a si
	В	A unicellular organism con- Virchow explained that cells	are f	orme	d from pre-existing cel
	С	Virchow explained that of Schleiden and Schwann form	ulate	ed the	cell theory.
	D	Schleiden and Schwami Torri			-
87.	Which	type of chromosome has centro	merc	slight	ly away from the middle of
	resulti	ng into one shorter arm and one le	onge	r arm?	
	A	Telocentric chromosome	3		centric chromosome
	C	Sub-metacentric chromosome [)	Meta	centric chromosome
		https://www.ja	amia	study.	com

88.	Whic	Which of the following statement is correct for ribosome.					
	Α	Ribosome have only cell membrane, not cell wall					
	B Ribosomes are found in nucleus of a cell.						
	C	Ribosome is found only in anima	l cell.				
	Ø	Ribosome is a non-membrane bou	ind org	ganelles found in a cel			
89.	W	ho discovered Viroids?					
	Α	Ananda Mohan Chakraborty	В	Charles Darwin			
	С	Kari Mulis	D.	T.O. Diencr			
) (),	Chi	pko movement started to conserv	c				
	Α	Grasslands	B	Forests			
	C	Deserts	D	Soil			
91.	Wh	nich of the following will easily o	lissolv	e in a polar solvent?			
	\mathcal{N}	Sodium chloride	В	Argon			
	С	Methane	D	Benzene			
)2.	The	e dissociation constant of H ₂ 0 at	25°C i	is			
		$10^{7} M$	В	10 ⁻⁷ M			
	£	10 ¹⁴ M	D	10 ⁻¹⁴ M			
				• • • • • •			

93.	Absorption maxi ma of DN A is around					
	Α	260 nm			В	280 nm
	C	409 nm			D	180 nm
94.	Whi	ch of the follow	ing alcohols wo	uld be n	nost s	soluble i n water?
	Α	Octanol		В		anol
	ع	Ethanol		D	Me	thanol
	-	esistance of a w	varies inve	rsely	as	
		osistance of a Wi	ire vi	В	1	Temperature
95.	Then	esistance of a Length	e * • • • • • • • • • • • • • • • • • •	t B	•	Area of cross section
		Length Resistivity	, *** *			socitoff
	С	Ken				
	vol	tage is a kind of		В		Fuel energy
96.	A Solar energy			D)	Potential energy
	A C	Kinetic energy	Y			. otontial chergy
	_	ancity of an el	lectron in the I	innern	nost	orbit of an atom is
97.	. The			В	3	Average of all
	A /	0)	Highest
	£	Lowest				
98.	If the	momentum of a pa	article is double	ed, ther	ı its o	de-Broglie wave length will
	becor	ne	D			
	X	Unchanged	В		Γimes 	
	C	2 Times	D	1/2	Time	S

Whe	en ultraviolet radiation is	s incident o	on a surface, no photoelectrons ar
emit	ted. If a second beam caus	ses photoeled	etron s to be ejected, it may consist of
` A	Radio waves	B	Visible light rays
С	X-rays	D	Infra-red waves
			070C the
	emit A C	emitted. If a second beam caus A Radio waves	C X-rays D

100. 16 gram of oxygen at 37°C is mixed with 14 gram of nitrogen at 27°C, the temperature of the mixture is

A 32.0°C

A 32.0 °C
C 37.0 °C
D 30.5 °C

https://www.jamiastudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से