ORIGINAL PAPER

- 1. If $y = \tan^{-1}\left\{\frac{1+x}{1-x}\right\}$, then $\frac{dy}{dx}$ is equal to
- $(b) \frac{1}{1+2x^2}$
- (c) $\frac{1-x^2}{1+x^2}$

- 2. If $y = \log(\tan x)$, then $\frac{dy}{dx}$ is equal to
 - (a) $2 \csc 2x$
- (b) $2 \sec 2x$
- (c) $2 \sin 2x$
- (d) $2\cos 2x$
- 3. If $y = \cos^{-1} x$ and $z = \sin^{-1} \sqrt{1 x^2}$ then $\frac{dy}{dx}$ is equal to
 - (a) $\frac{1}{1-x^2}$

 $(c)\frac{1}{1+v^2}$

- $(d)\frac{x}{1-u^2}$
- 4. If $y = e^{2x}$, then $\frac{d^2y}{dx^2}$, $\frac{d^2x}{dy^2}$ is equal to (b) $-2e^{2x}$
 - (a) $-2e^{x}$
- (c) $-2e^{-2x}$
- (d) $-2e^{-x}$
- 5. If $\sqrt{x+y} + \sqrt{y-x} = \sqrt{2}$, then $\frac{d^2y}{dx^2}$ is equal to
 - (a) 1

(b) 2

(c) 1/2

- 6. $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ is equal to
 - (a) 0

(c) $\frac{1}{4}$

- (d) 1
- 7. $\lim_{x\to\infty} (x-\sqrt{x^2+x})$ is equal to
 - (a) $\frac{1}{2}$

- $(d) \frac{1}{2}$
- 8. $\int \frac{dx}{x \log x \log (\log x)}$ is equal to
- (b) $\log(\log x)$
- (c) $\log(\log(\log x))$ (d) $(\log(\log x))^2$
- 9. $\int x^x (1 + \log x) dx$ is equal to

(b) $x^x \log x$

 $(c)\frac{x^x}{\log x}$

(d) $\frac{x^x}{a+x}$

- 10. $\int_0^1 \frac{x}{(1-x)^{3/4}} dx$ is equal to
 - (a) 12/5
- (b) -12/5
- (c) 16/5
- (d) 16/5
- 11. Let A and B are two disjoint subsets of a universal set E. The $(A \cup B) \cap B'$ is equal to
 - (a) E
- (b) ϕ
- (c) A
- (d) B
- 12. (A B) A is equal to
 - (a) ϕ
- (c) B
- (d) $A \cap B$
- 13. Let 10 is the cardinality of set A. The number of bijective mapping from set A to itself is
 - (a) 10
- (b) 55
- (c) 100
- (d) 3628800
- 14. Let n be a positive decimal integer. The number of digits in n is equal to ...
 - (a) $\lceil \log_{10} n \rceil + 1$
- (b) $|\log_{10} n| + 1$
- (c) $\log_{10} n$
- (d) $\log_n n$
- 15. Let cardinality of the set A and B are 2 and 5 respectively. The number of relations from A to B is
 - (a) 1024
- (b) 1000
- (c) 1010

- (d) 1025
- 16. Let $f: R \to R$, $g: R \to R$ be two functions given by f(x) = 2x - 3 and g(x) = x/2. The $(f \circ g)^{-1}(x)$ is equal to
 - $(a)^{\frac{x+3}{2}}$

- (b) x + 3
- (d) 2x 4
- 17. Let $f: R \to R$ is defined by $f(x) = x^2 + 5$, then value of $f^{-1}(4)$ is equal to
 - (a) + 1 (b) 1
- (c) ϕ
- 18. If $g: R \to R$ is defined by $g(x) = x^2 2$, then value of $g^{-1}(23)$ is equal to
 - $(a) \pm 5$
- (b) 25
- (c) ± 4
- 19. Let cardinality of A and B are 3 and 10 respectively. The number of one one functions from A to B is.....

(a) 2^{10} (b) 2^2 (c) 101 (d) 720	32. Let sum of n terms of an AP is $2n(n-1)$, then
20. Let $A = \{1,2,3,4\}$ and $B = \{a,b\}$ are two sets. The	the sum of their squares is
number of subjective mappings from A to B is	(a) $\frac{8n(n-1)(2n-1)}{3}$ (b) $\frac{8n(n-1)(2n-1)}{6}$
(a) 14 (b) 16 (c) 2^8 (d) 8!] 3
21. Let $z = \sqrt{3} + i$ be a complex number and \bar{z} be its	(c) $\frac{n(n+1)(2n+1)}{6}$ (d) $\frac{8n(n+1)(2n+1)}{3}$
conjugate. The $ \arg z + \arg \bar{z} $ is equal to	33. For what value of x , the
(a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$	$\log_2(5.2^x + 1), \log_4(2^{1-x} + 1)$ and 1 are in AP?
	(a) $\log_2 5$ (b) $\log_5 2$
22. The $\frac{(\sqrt{3}+i)^{17}}{(1-i)^{50}}$ is equal to	(c) $1 + \log_2 5$ (d) $1 - \log_2 5$
(a) $\frac{-1-\sqrt{3}i}{2^9}$ (b) $\frac{1+\sqrt{3}i}{2^9}$	34. If the ratio of sum of m terms and n terms of an
2	AP be m^2 : n^2 , then the ratio of the m^{th} and n^{th}
(c) $\frac{-1-\sqrt{3}i}{2^8}$ (d) $\frac{1+\sqrt{3}i}{2^8}$	term will be
23. For which of the following value of x , the	(a) $m:n$ (b) $2m-1:2n-1$ (c) $m+n:n+1$ (d) $n:m$
$\left(\frac{1+i}{1-i}\right)^x = 1$ is	35. The value of $9^{1/3} \times 9^{1/9} \times 9^{1/27} \times \infty$ is
(a) 29 (b) 35 (c) 34 (d) 68	(a) 3 (b) 9 (c) 1 (d) ∞
24. If ω is a cube root of unity, then the value of	36. If α and β are the roots of equation $x^2 + px + px$
$(1 - \omega - \omega^2)(1 + \omega^3)$ is	$p^2 + q = 0$, then the value $\alpha^2 + \alpha\beta + \beta^2$
(a) 2 (b) 4 (c) ω (d) ω^2	(a) p (b) $-p$ (c) q (d) $-q$
25. Let zbe a complex number. Which of the following	37. If the roots of $x^2 - bx + c = 0$ are two
is a solution of $ z - z = 1 + 2i$?	consecutive numbers, then $b^2 - 4c$ is equal to
3	
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$	
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$	(a) 1 (b) 2 (c) 3 (d) 4
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is	
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0 \text{ is}$ (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0 \text{ be equals.}$ then a, b, c are in (a) HP (b) GP (c) AP (d) None of these
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals. then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^nP_r = {}^nP_{r+1}$ and ${}^nC_r = {}^nC_{r-1}$, then (n, r) is
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is equal to	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^nP_r = {}^nP_{r+1}$ and ${}^nC_r = {}^nC_{r-1}$, then (n, r) is (a) (2.3) (b) (3.2)
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) a^2x^2 (b) $a^2x^2y^2$ (c) $a^2(y^2 - x^2)$ (d) $a^2(x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is equal to (a) 5 (b) 9 (c) 7 (d) 3 30. $\sin 6^0 \sin 42^0 \sin 66^0 \sin 78^0$ is equal to	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^nP_r = {}^nP_{r+1}$ and ${}^nC_r = {}^nC_{r-1}$, then (n, r) is (a) (2.3) (b) (3.2) (c) (4.3) (d) (3.4)
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is equal to (a) 5 (b) 9 (c) 7 (d) 3 30. $\sin 6^0 \sin 42^0 \sin 66^0 \sin 78^0$ is equal to (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{1}{8}$ (d) $\frac{1}{4}$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^nP_r = {}^nP_{r+1}$ and ${}^nC_r = {}^nC_{r-1}$, then (n, r) is (a) (2.3) (b) (3.2) (c) (4.3) (d) (3.4) 42. The number of arrangements of the letters of the
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a\sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) a^2x^2 (b) $a^2x^2y^2$ (c) $a^2(y^2 - x^2)$ (d) $a^2(x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is equal to (a) 5 (b) 9 (c) 7 (d) 3 30. $\sin 6^0 \sin 42^0 \sin 66^0 \sin 78^0$ is equal to (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{1}{8}$ (d) $\frac{1}{4}$ 31. If 20^{th} term of an AP is 30 and its 30^{th} term is 20,	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r-1}$, then (n, r) is (a) (2.3) (b) (3.2) (c) (4.3) (d) (3.4) 42. The number of arrangements of the letters of the word BANANA in which the two N 's do not
(a) $\frac{3}{2} + 2i$ (b) $2 - \frac{3}{2}i$ (c) $\frac{3}{2} - 2i$ (d) $2 + \frac{3}{2}i$ 26. If $\sin \theta + \csc \theta = 1$, then $\sin^n \theta + \csc^n \theta$ is equal to (a) 1 (b) 2 (c) 2^n (d) $2^n - 1$ 27. The value of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal to (a) 3 (b) 2 (c) 1 (d) 0 28. If $x = \cos^2 \theta \sin \theta$ and $y = a \sin^2 \theta \cos \theta$, then $(x^2 + y^2)^3$ is equal to (a) $a^2 x^2$ (b) $a^2 x^2 y^2$ (c) $a^2 (y^2 - x^2)$ (d) $a^2 (x^2 - y^2)$ 29. The minimum value of $3\cos \theta + 4\sin \theta + 10$ is equal to (a) 5 (b) 9 (c) 7 (d) 3 30. $\sin 6^0 \sin 42^0 \sin 66^0 \sin 78^0$ is equal to (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{1}{8}$ (d) $\frac{1}{4}$	(a) 1 (b) 2 (c) 3 (d) 4 38. The number of the real roots of the equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 39. If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (a) HP (b) GP (c) AP (d) None of these 40. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non – zero common root, then λ is equal to (a) 1 (b) -1 (c) 2 (d) -2 41. If ${}^nP_r = {}^nP_{r+1}$ and ${}^nC_r = {}^nC_{r-1}$, then (n, r) is (a) (2.3) (b) (3.2) (c) (4.3) (d) (3.4) 42. The number of arrangements of the letters of the

43. The sum $(n+1)$ terms of the series	(c) Decay Time (d) Changing Time
$\frac{c_0}{2} - \frac{c_1}{3} + \frac{c_2}{4} - \frac{c_3}{5} + \cdots$ is	53. Which of the following is not equivalent to x ?
2 3 4 5	(a) $x \cdot x$ (b) $x + x$
(a) $\frac{1}{n+1}$ (b) $\frac{1}{n+2}$ (c) $\frac{1}{n(n+1)}$ (d) $\frac{1}{(n+1)(n+2)}$	(c) x . 1 (d) $x + 1$
$(c) \frac{1}{(d)(d)}$	54. Which of the following is a sequential circuit?
n(n+1) $(n+1)(n+2)$	(a) Adder (b) Decoder
44. If ω is a cube root of unity, then $\begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & 1 \\ 0 & 1 & \omega^2 \end{bmatrix}$ is	(c) Multiplexer (d) Flip Flop
$\frac{1}{\omega}$ $\frac{\omega}{1}$ $\frac{1}{\omega^2}$	55. Which of the following will be the number of
equal to	output lines in a combinational circuit that takes
(a) ω (b) ω^2 (c) 0 (d) - 3	input a two bit number and produce the output
45. If $A = \begin{bmatrix} x & 2 \\ 2 & x \end{bmatrix}$ and $ A^2 = 0$, then x is equal to	cube of it?
	(a) 3 (b) 4 (c) 5 (d) 6
(a) ± 2 (b) ± 3 (c) 1 (d) 4	56. Which of the following is a web browser?
46. Let $\vec{A} = i - j + k$, $\vec{C} = -i - j$ be two vectors.	(a) Avira (b) TrustPort
Which of the following is the vector \vec{B} such that	(c) Opera (d) None of these
$\vec{A} \times \vec{B} = \vec{C}$ and $\vec{A} \cdot \vec{B} = 1$?	57. Which of the following is an operating system?
(a) i (b) k (c) $-j$ (d) $i + j$	(a) Baidu (b) Symbian
47. A point P on y -axis is equidistance from the	(c) AVG (d) None of these
points $A(-5,4)$ and $B = (3, -2)$. Its coordinate is	58. Which of the following is antivirus software?
	(a) Symbian (b) Norton
(a) $\left(0, \frac{3}{4}\right)$ (b) $\left(0, \frac{4}{3}\right)$	(c) AVG (d) None of these
(c) $\left(0,\frac{3}{7}\right)$ (d) $\left(0,\frac{7}{3}\right)$	59. Which of the following is a web search engine?
48. The area of the triangle with vertices $A(a, b + c)$,	(a) Opera (b) Symbian
B(b,c+a),C(c,a+b) is equal to	(c) AVG (d) None of these
(a) (b) $ab + bc + ca$	60. Which of the following is a social media website?
(c) $a + b + c$ (d) $a + b - c$	(a) Instagram (b) Norton
49. Two dices are thrown simultaneously. The	(c) Symbian (d) None of these
probability of obtaining a total score of 5 is	61. z/OS is a
(a) $\frac{1}{12}$ (b) $\frac{1}{36}$ (c) $\frac{1}{9}$ (d) $\frac{1}{8}$	(a) PC operating system
	(b) Mainframe operating system
50. Three of the six vertices of a regular hexagon are	(c) Mobile operating system
chosen at random. The probability that triangle	(d) None of these
formed with these chosen vertices is equilateral,	62. Which of the following is a mobile operating
equal to	system?
(a) $\frac{1}{2}$ (b) $\frac{1}{10}$ (c) $\frac{1}{5}$ (d) $\frac{1}{20}$	(a) Palm operating system
51. Minimum number of two-input NAND gates used	(b) AVG
to perform the function of two-input OR gate is	(c) BeOS
(a) One (b) Two	(d) None of these
(c) Three (d) Four	63. Intel 8086 is a bit microprocessor.
52. The time required for an electronic circuit to	(a) 4 (b) 8 (c) 16 (d) 32
change its state is called	64. Which of the following is mainframe computer.
(a) Propagation time (b) Rise Time	(a) Vtech (b) Rabbit
	(c) Dubna (d) IBM System/360